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A large number of works has been devoted to the theory of fracture of 

solids and reference is made to some of these [ l-121. The present paper 

is concerned with the formulation of a theory of fracture of solids. The 

theory proposed is formal in character and is limited to the investigation 

of the simplest phenomological features of solids. It is a development of 

the ideas of Gvozdev [ I]. 

By the fracture of a solid is meant its disintegration under load. The 

character of the state of stress should be such that the static as well 

as the kinematic fracture is possible. Investigation of these aspects of 

fracture is the subject of its simplest theory. 

Following Prandtl’s [2] concepts let us consider a brittle fractured 

body. The assumption of a brittle fractured body is a simplifying one and 

it allows such properties as elasticity, viscosity, plasticity creep etc. 

which are exhibited by solids under load, to be disregarded. It is the 

model of a brittle fractured body which permits to exhibit the simplest 

fracture properties in their “pure” form. 

If one excludes the influence of temperature and of rate of loading, 

then fracture of a brittle fracturing body will occur when some combina- 

tion of stresses will reach its limiting value 

f ((R, 0.2, as) == c (c ~~ con&) (1) 

where (T 
1’ O2’ a3 are the principal stresses. 

One should note that even under these assumptions, the process of 
fracture can be accompanied by emission or absorption of heat, and this 

quantity must be considered in the general balance of the energy state; 

however, in the simplest case we will assume, that all heat effects can 

be neglected. 

Expression (1) will be called the failure condition. The simplest 
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possible failure condition can to a large degree be achieved assuming a 

homogeneous body, isotropic at any moment of loading. 

The first assumption in the simplest case is that the failure condi- 

tion is independent of the parameters characterizing change of properties 

in the initial condition of the material. 

The second assumption establishes coincidence of material properties 

in an arbitrary direction. 

The failure condition is interpreted in the space of principal stresses 

as some surface, which will be called the surface of failure condition. 

Obvious properties of this surface of failure are that it does not pass 

through the origin of the coordinate system, and that any straight line 

through the origin of the coordinate system does not intersect it more 

than once. 

Thus, in formulating a simple theory of fracture, the following assump- 

tions have been made: 

(1) Absence of properties of elasticity, viscosity, plasticity, creep 

etc in the body (model of a brittle fractured body). 

(2) Absence of influence of heat effects on fracture (ideal character 

of fracture). 

(31 Homogeneous properties of the body. 

(4) Isotropic properties of the body. 

(5) Disregard of influence of rate of loading etc. 

It appears that relaxation of any of these assumptions 1-5 will lead 

to‘generalizations of the considered theory of fracture. 

Let us now express some assumptions which are to be the basis for 

further considerations. First let us assume that the failure surface is 
not concave. This assumption can be investigated following Drucker [ 131 

and Hill [ 141. 

The second assumption consists of the following: of all the possible 

fracture conditions for a given group of mechanical properties, the 

actual condition corresponds to the minimum fracture stresses. We shall 

interpret the fracture stress as the value of the vector length ~(a~, ~2, 

Oj)’ where components al, u2, u7 satisfy equation (1). 

Let us investigate a curve lying at the intersection of the fracture 
condition surface with the surface u 1 + u* + u 7 = const (Fig. 1). 

Obviously the possible non-concave curves for the given lengths of 
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OA1 = OA2 = OA7 lie between triangles A1A2A7 and RIBZRj. For given 

lengths OAi and OCl(i = 1, 2, 3) the hexagon A1A1A2C2AJC7 will obviously 

define a curve corresponding to the possible fracture surface, requiring 

minimum fracture stresses, Thus some non-concave curvilinear pyramid is 

the required surface of fracture condition. 

Fig. 1. 

It is known [ 151 that’ the state of stress corresponding to the edge 

of such a pyramid, is statically determinate, and the equations defining 

the state of stress belong, generally speaking, to the hyperbolic type. 

This can be proved as follows. 

It suffices to investigate the case, when 

Using relations 

where uXB r - -- 
tion cosinesXI 

are stress components, and Ii, mi, ni( i = 1, 2, 3) direc- 
determining the mutual orientation of the axes of the 

Cartesian system of coordinates and of the principal directions of stress, 

we obtain from (3) and (2) 

ox = Cl + [f (01) - 011 n12* T ._/ _ I1 (01) - 611 nlR2 

by = 01 + If (Cl) - 011 R22~ ryz = [f (01) - 011 nzns (4) 

oz = ~1 + If (01) - 011 n32. T,, = [f (01) - 011 R3nl 

The value of ui can be expressed through o = 1/3(ul + o2 + oj) from 
relation 

“al _1- f (01) = 3a (5) 

We will assume aI = g(u). From (4) we obtain the required fracture 

condition 
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lo, - 6 (@I Iotl - g (4 I - rq/2 = 0 
bl, -g (41 io, - g (41- ‘vz” = 0 
[(Jz -g (41 IO, - g (o)l- Tzx2 = 0 

Substituting expressions (4) into equations of equilibrium 

(6) 

and considering that 

n12 + ng2 + n$ = 1 (8) 

we obtain a system of four equations with four unknowns, whose character- 

istic determinant is equal to 

where $(x, y. Z) is the equation of the characteristic surface of the 
system. 

From condition (10) it follows that there exist two families of 

characteristic surfaces, of which one is orthogonal to the direction of 

the third principal stress, and the second intersects it at an angle 8, 

so that 

cosfl - Ifi 1/;! +ldrpldux 
It follows from (IO) that 

df/dq > - 1 (II) 

Thus if the state of stress preceding failure corresponds to a pyramid 

edge, then the boundary conditions (formulated of course in terms of 

stresses) enable us to determine the region in each point of which the 

fracture conditions (1) are realized. Fracture will take place in this 

region, which will be termed the fracture region. 

Let us investigate some particular cases of fracture conditions. First 
let us assume that the pyramid interpreting the fracture condition inter- 

sects the axis u 1 = u2 = u3 at a point a1 = o2 = u3 > 0. In the opposite 

case fracture would OGCU~ under uniform compression stress. If one assumes 
that the apex of the pyramid moves towards infinity, then the pyramid 

degenerates into a cylinder, whose generators are parallel to the straight 
line D 1 = o2 = a3. In the simplest case, when the fracture limits in 
tension and compression coincide, the fracture condition respresents the 
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equality of the maximum shear stress to some constant 

Ibi -ujl = c (i#j, i, j = 1, 2, 3) (12) 

Another limiting case occurs when the pyramid apex moves towards the 
origin of coordinates. If the value of the fracture limit in tension is 

known and is equal to a constant d. then the pyramid degenerates into a 

plane 
qi + (1% + a3 = d (13) 

One of the most interesting cases is the fracture condition 

cl&d, c2 < d, cssdd, d = const (14) 

Condition (14) is interpreted in the space of principal stresses by a 

triangular base pyramid, three sides of which are planes meeting at right 

angles (OIABC in Fig. 2). Let us assume that the state of stress corres- 

ponds to the pyramid edge 
c1 = ca = d, 03 < d (15) 

ds 

I s” -- 
A I a, JP ,&- --- d 

/’ I 

,c 
I 

Fig. 2. 

In this case we obtain from (3) and (15) 

oX = d + qQ, 7 XII = Cj”Inz 

ay = d + vf, 7uz = 9w3 

u2= d + qnsa, =zx = qn3nl 

where p = 3(0 - d). 

(16) 

From (16) we obtain the required fracture conditions 

(a, - d) (ov - d) - ~~~~ = 0 

(ov -d) (a2 - d) - ~~~~ = 0 

(tsz - d) (ox -d) - tzx2 = 0 

(17) 

Assuming ni = cos $i and substituting expression (16) into equation 
of equilibrium (‘I), we obtain 

&J 
cos ‘PI co9 ‘pa ;+ + COS ‘p1 cos 'p3 g 

891 a92 

cosal& + 
- q sin 29~ z - q sin ‘pl cos ‘pz aw - 

a(P1 dw %3 

-q'sin?l Cm 'ps;j; - qcosrpl sin ‘pz a~ - qcosv, sin ‘p3 gz- : 0,. . (18) 
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Joining equation (8) to the three equations (18), we find that the 

characteristic determinant of the system is equal to 

o=o (19) 

Consequently, the characteristic surfaces are orthogonal to the 

directions of the third principal stress. The system of equations is 

parabolic. Obviously the investigated case is the limiting case of the 

general one when df/dal+ 00. 

Let us pass to the investigation of the kinematic side of the fracture 

process. It is to be remembered that the body and its parts remain rigid 

(non-deformable) according to the accepted hypothesis during the whole 

process of fracture. However, fracture of a given brittle fracturing body 

under a given state of stress proceeds in a completely defined way. 

Let us assume that at each point in the fracture region the fracture 

velocities are defined. The field of fracture velocities enables us to 

define the field of fracture strain velocities. 

The field of fracture strain velocities is to be understood in the 

sense that at a moment preceding fracture, the body tends to deform in a 
fully defined manner. This tendency to deform leads to failure. 

The true field of strain velocities must characterize definite extremum 

properties of state of a body’prior to failure. It is therefore natural 

to consider fracture condition as a “fracture potential”. 

Definition (20) allows the formulation of theorems, which establish 
extremum properties of the state before fracture [ 16-171. 

%ieneralization of definition (201 shows that it is preferable to 

satisfy the state’ of stress, corresponding to the edges of the fracture 
surface, since this ensures the maximum freedom of fracture [ 18-191. 

Let us indicate relations defining the field of fracture strain velo- 
cities in case (6). Following [ 181 we obtain 

ES = f )<I&?’ (au i- bz - 2g) + hz [S g’ (az + ax -- 2g) - 

- (oz.-- g) 1 A- ).3 [S g’ (ax + 0” - 2g) - (U# - g) 1 , . . . 

Exl, = ).:I: .i II’ EUL = &TUz. EtX = ‘hzT,, (g’ == dgldo) 

From (21) we find 

EI - E, 
ll:tR’ (0, -I- o,, - 21) - (b,, - g) ‘I:@ (o,, -I- uz -- 2g) 

J--Y 
-- - _~_~_ 

- % 
_- 

t xv % 

(‘I) 

(22) 
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-EZX 
‘Id bz + by - 2g) - (5, - g) _ o 

--- ). , 

7*x 

The three relations (221 are equations in three unknown components of 

fracture velocity a, V, W. The characteristic manifold of equation (22) 

co incides with the characteristic manifold defined by equation (9). 

For the case (17) we will have 

“1,-d EX + EXY L- 
oz -- d 

7 xw 
-tEXZ -c. -0 

E 
bx --a oy - a 

xt y-++yr - +EZ=O 
xz ‘i 

ZY 

The characteristic manifold of the system of equations (23) is defined 

from equation (19). 

Fig. 3. Fig. 4. 

As a result of fracture the body disintegrates in a number of rigid 

parts. Therefore, strictly speaking, only that fracture is feasible whose 

fracture velocities allow a relative displacement of the parts of the 

body as rigid entities. Therefore, in brittle fracturing bodies the 

failure surface will consist of portions of characteristic surfaces (along 

characteristic surfaces the action of fracture stresses and the tendency 

to deform are a maximum), sointerconnected that part of the body formed 

during fracture is able to move as a rigid body. 

In real bodies under load there appear such properties as elasticity, 
plasticity etc , therefore, portions of the body have a higher degree of 

freedom of mutual displacements and fracture is accompanied by the appear- 
ance of cracks propagating along characteristic surfaces. 

If the failure condition surface is represented by the above mentioned 
hexagonal curvil inear pyramid, then the failure will be called shear 

fracture, and failure under condition (15) cleavage. Apparently, under 
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such definition fracture by cleavage is a particular case of fracture in 

shear. 

Some examples follow. Let us investigate the case of the plane state 

strain. Fracture condition will be expressed as 

01 G d, 02 4 d, 101 -%I<: (241 

In Fig. 3 a broken line is shown, representing the fracture condition 

Note that aj = 1/2(n1 + 02). Conditions (24) will be rewritten as 

(0, - d) (ou - d) - T.Ly2 = 0, 

The state of stress under conditions (25) has been investigated in the 

theory of ideal plastic plane state of stress [ 201. 

Fig. 5. 

In the case of uniaxial tension with d < k cleavage will occur (Fig. 

4,a). while in the case of uniaxial compression shear fracture will occur 

(Fig. 4, bl. In the case of pure bending with d < k the position of the 

neutral axis is obtained from the condition of a minimum bending moment 
M at fracture. We obtain 

M = + [k (” - h.)2 .- h2d] (h = zd) 

where H is beam thickness, h the distance of the upper side of the beam, 
from the neutral axis (Fig. 4,~). In the upper part failure occurs as 

a result of cleavage, in the lower, as a result of shear fracture. 

Let us investigate the equilibrium of a thick-walled tube subjected to 

internal pressure (Fig. 5). We denote the inner and outer tube radii by 

a and b. One has to distinguish two zones of state in the tube, separated 

by a circle of radius C. Let us pass to non-dimensional quantities 

P=rla, 6=c/a, fl=b/a 

where r is the current radius. 

Using the equation of equilibrium 
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da 
-2 up - u. 
4 + -P-=’ (27) 

we obtain from condition u 
P 

- 00 = - k in the inner zone 

oQ = li In p + Cl, yO==kfklnp+C1, 7pe = 0, C1 = consl (28) 

In the outer zone 

up -= 2 $- d, U” -- d, 7 
PO =~ 0, C2 = const (29) 

P 

Combining solutions (28), (29). and taking into consideration that 

"P = - 
p at p = 1, and u 

P 
= 0 at p = 13, we obtain 

c, = -p* $j z- ?,k :z -. C;! (30) 

In order to have two zones in the tube, one must satisfy the inequal- 
ity d < k as 6 < /3. 

The required fracture pressure is obtained from expression 

(31) 

In the inner zone failure will occur in shear, in the outer through 

cleavage. 

1 I I 

Fig. 6. Fig. 7. 

Let us investigate a specimen in tension with round notches (Fig. 6). 

For d < k failure occurs in cleavage. For d > k there appear zones of 
failure in shear, and the stress is determined from formulas (28), and 

“P 
= 0 at p = 1. We then have 

(I~ = k In p, ‘sO = k + k In p, T pe = 0 (32) 

Relations (29) apply along the cleavage line. Combining these solutions 

we obtain 
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C1 = - ks, 
d-k 

6 =expk (1 G 6 <B) 

The value of 6 defines the dimensions of the cup formed at failure. 
When d > k + k In fl failure occurs in shear only. 

If one cuts a vertical slot in the specimen, then the character of 

the state of stress differs radically from the one investigated, and at 

d > k failure will occur in shear as shown in Fig. 7. 

It is to be noted that, first, there is obviously a similarity between 

the approach to the study of the fracture problem and the approach to the 

derivation of a theory of plasticity presented in the paper [ 211. 

However, Saint-Venant [ 221 has already remarked that plastic deform- 

ations and fracture are two radically different phenomena and that he 

therefore clearly distinguishes between the process of plastic deformation 

and the process of fracture . Similarity of approach to these problems 
does not indicate the particular similarity of the processes of plasticity 

and failure, b.ut indicates the possibility of a unified approach to the 

problems of investigation of properties of solids, which are exhibited 

when the load reaches a certain combination of values. These circumstances 

were illustrated by Prager [23, 241, in his studies of the properties of 

an ideally hardening and restrictedly compressible body. 

Let us also note that such concepts, as discontinuous solutions, 

statically and kinematically possible fields of stress and fields of 

velocity, as well as extremum theorems,can be easily adapted from the 

theory of plasticity to the theory of fracture. 
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